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Abstract

The in¯uence of accuracy of the turbulent di�usion model (TDM) included in the Reynolds stress transport model (RSTM), on

describing the behavior of the mean velocity components as well as the Reynolds stresses has been studied for an isothermal in-

compressible ¯ow in a rotating cylindrical pipe. RSTMs used usually in practice, cannot reproduce correctly the behavior of sta-

tistical characteristics along the rotating pipe axis, in particular. Because of strong inhomogeneity of the ¯ow, one of the reasons of

the RSTM shortcomings could be insu�cient accuracy of TDMs. A new tensor-invariant model for the triple velocity correlations,

describing satisfactorily their behavior over the whole ¯ow ®eld, from the pipe axis to the wall, has been developed by the authors.

Testing the standard RSTM with the di�erent TDMs in a rotating pipe ¯ow shows that for calculating the ®rst- and second-order

moments, the important characteristic of the TDM is its tensor-invariance. The mean velocity components are mostly in¯uenced by

the model for the pressure±strain correlations. Application of more accurate TDM creates the basis to improve models for the

pressure±strain correlations and the dissipation tensor, and, ®nally, get the RSTM applicable to a wide range of turbulent

¯ows. Ó 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

Turbulent swirling ¯ows are widely used in modern tech-
nological processes and occur in the natural environment as
large-scale concentrated vortex formations. Rotation in such
¯ows has a strong in¯uence on turbulent momentum, heat,
and mass transport.

The in¯uence of rotation on the ¯ow structure is deter-
mined, among other factors, by the way vorticity is produced.
In the present work, a turbulent incompressible isothermal
¯ow in a rotating straight cylindrical pipe is considered. Such
¯ow is of interest because it occurs in various engineering
systems, like, e.g., heat exchangers and rotor cooling systems.
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Notation

Ui, ui covariant components of
mean and ¯uctuating ve-
locities

f;i di�erential operator de®ned
by of =oxi

xi coordinates
xn normal distance to a pipe

wall
gij metric tensor
D=Dt mean substantial derivative
h� � �i means ensemble averaging
r, x radial and axial coordinates
R, D pipe radius and diameter
U , W longitudinal and circumfer-

ential components of mean
¯ow velocity

u, v, w longitudinal, radial, and
circumferential components
of ¯uctuating velocity

u�o friction velocity
Wo rotating pipe wall velocity
Um mean axial ¯ow velocity
Uo mean velocity at pipe center
N � Wo=Um swirl parameter
k � �1=2�hu2

i i turbulent kinetic energy
~P , p mean pressure and pressure

¯uctuation

dx forward-step in the grid
Ri Richardson number
Rem � UmD=m, Reo � UoD=m,
Re� � u �o R=m

Reynolds numbers

S�ui� � hu3
i i=hu2

i i3=2
skewness factor

Ku � hu2i�Ni0�=hu2i�N � 0� damping coe�cient
y� � �1ÿ r=R�Re�

Greek
e dissipation rate of turbulent

kinetic energy
q ¯ow density
m kinematic viscosity
s � j=e time scale of the velocity

®eld
dij Kronecker symbol
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Moreover, such type of a turbulent ¯ow has all the features of
boundary-layer ¯ows of practical interest, whose rotation is
caused by a rotating surface. At moderate swirl, the core of a
pipe ¯ow can be considered also as a model for turbulent
transport in natural concentrated vortex. Thus, the results of
investigation of turbulence structure in a pipe ¯ow can be
applied to a wide area of practical situations.

Despite the simple geometry of a pipe ¯ow, there are great
experimental di�culties associated with ¯ow measurements
even in the case of a non-rotating pipe. Therefore, correct ¯ow
modeling is important. Models developed for the velocity ®eld
in an isothermal turbulent ¯ow can be further used for de-
scription of scalar ®elds. Such assumption, in the case of a pipe
¯ow, is based on experimental data, which showed similarity of
turbulent transport of velocity and scalar moments (Nagano
and Tagawa (1988)), and that heat e�ects have no in¯uence on
the evolution of the velocity moment pro®les under swirl
(Sadovskii, 1991, Cannon et al., 1969).

As experiments demonstrate, it is possible to distinguish
two regions in a rotating pipe ¯ow with di�erent structure
of turbulence: the initial section of a pipe with a length of
about 30D and the saturation region, which is observed
at about 170D for a ¯ow at any Reynolds number. In the
former region, strong turbulence suppression is observed
(Zaets et al., 1985). In the latter one, pro®les of statistical
characteristics reach their limit shapes (Kikuyama et al., 1983,
Nishibori et al., 1987, and Imao et al., 1996, in particular).

The mean velocity components change monotonically
along the pipe axis at the given swirl parameter and also at the
given section with increasing a ¯ow swirl. The pro®le of the
longitudinal component tends to be parabolic as the one in a
laminar ¯ow, but does not reach such shape. The pro®le of the
circumferential component has the parabolic limit shape
�W =Wo � �r=R�2� instead of the expected linear one as it would
be in the case of a forced rotational ¯ow. Experiments also
show that both limit pro®les of U and W are not a�ected by
the Reynolds number, and the pro®le of W does not depend on
the value of the swirl parameter N . Turbulent friction de-
creases down to its limit value along the pipe. At the given
section, turbulent friction decreases with increasing the swirl
parameter.

However, we cannot use such notion as ``laminarization of
a ¯ow under swirl'', because moments of second and higher
orders behave non-monotonically with increasing both pa-
rameters: pipe length and swirl degree. In the initial pipe sec-
tion, strong suppression of moments is observed (Zaets et al.,
1985). After suppression, moments of the second and higher
orders increase and are stabilized at a high level (Zaets et al.,
1985; Nishibori et al., 1987).

These and other features of a rotating pipe ¯ow demon-
strate how complex is its structure and that a good model of
turbulence must re¯ect them.

The mathematical modeling of such ¯ow with k±e models
does not give satisfactory results. In particular, for a developed
rotating pipe ¯ow, the k±e model predicts a linear limit pro®le
for W , as it would be in the case of solid body rotation, that is
in contradiction with experimental data. The problem has its
roots in the concept of turbulent viscosity (see. e.g., Torii and
Yang, 1995).

In our research, two aims are pursued:
± to consider possibilities of some known Reynolds stress

transport models to describe completely the turbulence
structure of a pipe ¯ow: initial region of strong turbulence
suppression, the saturation region, and the transition area
between them;

± to ®nd how the turbulent di�usion model included in the
RSTM in¯uences the behavior of statistical characteristics
in a swirling ¯ow.

2. Veri®cation of RSTMs in a pipe ¯ow

2.1. Governing equations

The set of exact transport equations for the mean velocity
vector and the turbulent stress tensor in the case of a sta-
tionary incompressible ¯ow is written in the general tensor
form as:

U jUi;j � mgjkUi;jk ÿ hui uji;j ÿ ~P ;i=q

Ui
;i � 0; Ukhuiuji;k � Dij � Pij �Pij ÿ eij;

�1�

where eij � 2mgkmhui;muj;ki is the dissipation tensor; Dij �
ÿhuiujumi;m ÿ �hpuii;j � hpuji;i�=q� m�gkmhui uji;k�;m is the dif-
fusion term; Pij � ÿhuj ukiUi;k ÿ hui ukiUj;k is the production
term; Pij � hp�ui;j � uj;i�i=q is the pressure±strain correla-
tion.

To close set (1), terms Dij, Pij, and eij should be modeled.

2.2. Model approximations

On this stage of the research, the simple gradient di�usion
model (Daly and Harlow, 1970) is used to model Dij in each
tested RSTM.

The dissipation tensor eij is modeled by the isotropic ex-
pression with correction for low Reynolds numbers near a
solid wall (So and Yoo, 1986). The equation for the dissipation
rate of the kinetic turbulence energy is used in the following
form (So and Yoo, 1986; Kurbatskii et al., 1995):

Uke;k � gkm me;k

��
� Ce

k
e
huk ulie;l

��
;m

� Ce1 P
ÿ ÿ C�e2e

� e
k
ÿ 2me

x2
n

f1; �2�
P � �1=2�Pii � ÿhui ukiUi;k ; f1 and f2 are damping functions
(So and Yoo, 1986); Ce, Ce1, Ce2, Ce3 are model constants,
C�e2 � max�1:4;Ce2 f2�1ÿ Ce3 Ri�� (Kurbatskii et al., 1995). The
Richardson number characterizes in¯uence of streamline cur-
vature on turbulence like those of medium strati®cation on
turbulent transport (Bradshaw, 1969). Eq. (2) at Ri� 0
transforms into the ``standard'' equation.

Two model expressions for the pressure±strain correlation
Pij were considered.

The ®rst one (Launder et al., 1973) was taken with the wall
correction (Gibson and Launder, 1978):

Pij � P�1�ij �P�2�ij � P0�1�ij

�
�P0�2�ij

�
f xn� �; �3�

where

P�1�ij � ÿC1

e
k
hui uji
�

ÿ 2

3
dijk
�
; �4�

P�2�ij � ÿC2 Pij

�
ÿ 2

3
dij P

�
; �5�

P0�1�ij � C01
e
k
hu2

nignndij

�
ÿ 3

2
hun ujigin

ÿ � hun uiigjn

��
; �6�

P0�2�ij � C02
e
k

P�2�nn gnndij

�
ÿ 3

2
P�2�nj gin

�
�P�2�ni gjn

��
�7�

f � �1=5�k3=2= exn� � is a damping function, C1 � 1:5, C2 � 0:6,
C01 � C02 � 0:3.

The other model expression for Pij was suggested in
Launder (1989), where there was shown that in the case of an
axisymmetric swirling ¯ow, the convective transport tensor
should be inserted in Eq. (5) to get better results:
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Cij � o
oxk

Ukhui uji
ÿ �

: P�2�ij � ÿC2 Pij

�
ÿ Cij ÿ 1

3
dij Pkk� ÿ Ckk�

�
:

�8�
Finally, veri®cation of three RSTMs was carried out.

Model 1 (denoted hereafter by M1), which was suggested in
Kurbatskii et al. (1995), includes Eq. (2) �Ri 6� 0� and model
expressions (3)±(7) to close set (1). In the second model (M2),
Eq. (2) at Ri� 0 is used as well as expressions (3)±(7). At
present, M2 is considered as the ``standard'' model and some
of its properties have been analyzed for a turbulent ¯ow in a
rotating long cylindrical pipe in Hirai et al. (1989). Model 3
(M3) is similar to M2, but instead of expression (5), its mod-
i®cation (8) for a swirling ¯ow is used.

2.3. Numerical procedure

In each model, the set of the closed equations for required
functions (U , W , k, e, a � hw2i ÿ hm2i, hu2i, and the other
turbulent stresses) was written in the axisymmetric cylindrical
frame of reference in the boundary layer approximation. The
calculation conditions were the same as in the experiments
(Zaets et al., 1985), where a swirling ¯ow was obtained by
conveying a fully developed turbulent ¯ow (Uo � 103 cm/s, m �
0:149 cm2/s, u�o � 43:5 cm/s) from a stationary (non-rotating)
straight cylindrical pipe of the 100-diameter length into a ro-
tating cylindrical section of the same diameter �D � 6 cm).
However, these conditions could be changed to get a ¯ow with
other parameters.

For solving the di�erential equations, the control volume
technique (Spalding, 1977) was used. Boundary conditions
were:

oU
or
� ok

or
� oe

or
� ohu2i

or
� oa

or
� huvi � hvwi

� huwi � W � 0 �r � 0�;
U � k � e � hu2i � a � huvi � hvwi � huwi � 0;

W � Wo; �r � R�:
Pro®les in the initial section of a stationary pipe ¯ow were

chosen as:

E�r� � Eo � 10ÿ3 u2
�o; hu2i � �2=3�Eo; a � 0; huvi � 0;

U�r� � u�oy�; 06 y�6 y�R;
Au�o y�� �1=7

; y�R < y�6Re�; A � 8:74; y�R � A7=6:

�
The pro®le e�r� � clfl

ÿ �1=2
EooU=or was found from the

local balance condition �P � e� and from the gradient ap-
proximation huvi � ÿclfl�E2=e�oU=or, where cl � 0:09 and
fl � 1ÿ exp�ÿ0:01y�� (So and Yoo, 1986). The pressure
gradient in Eq. (1) was determined as

ÿ 1

q
D ~P
Dx
� 2

R2

�
ÿ r m

@U
@r

�
ÿ huvi

�����R
0

!
� 2m

R

�
ÿ oU

or

�����
r�R

:

In the initial section, its value is known: ÿ�1=q�
D ~P=Dx
ÿ � � 2 u2

�o=R
ÿ �

.
The grid was non-uniform along r, with total number of

nodes in this direction being 128. Size of dx was 0:05R.

2.4. Results and discussion

Results of calculations were compared with experimental
data. In experiments (Zaets et al., 1985), statistical character-
istics (the ®rst- and second-order moments of the velocity ®eld)
of a turbulent ¯ow were measured in the exit section of short
rotating pipe at x=D � 25, Rem � 37000, N 6 0:6. In Kikuya-
ma et al. (1983), Nishibori et al. (1987), and Imao et al. (1996),

the behavior of the mean velocity components (longitudinal
and circumferential) as well as the longitudinal turbulence in-
tensity was studied in a long rotating cylindrical pipe
�x=D6 168� at Rem � 0:5 � 3 � 104 and N � 0:5 � 3. Because
experiments were carried out under di�erent conditions,
quantitative comparison of the data is di�cult.

As it was shown in Kurbatskii et al. (1995), M1 reproduces
satisfactorily the evolutions of the U and W pro®les, as well as
the Reynolds stress pro®les under moderate ¯ow swirl
�N 6 0:6� in a short rotating pipe �x=D � 25�. The present
calculations carried out for a ¯ow in a rotating long pipe,
demonstrate that this model can catch only some features of
the ¯ow evolution downstream of the initial pipe section and
only under moderate swirl �N � 0:34�. It describes the decrease
of the friction coe�cient in consequence of laminarization of
the longitudinal velocity pro®le (more exactly, its para-
bolization) and anisotropy of the kinetic turbulence energy
components as well as tendency of the pro®les of U and W to
their limit shapes in the saturation region. However, these
pro®les are not in quantitative agreement with the experi-
mental ones. Moreover, their dependence on both the Rey-
nolds number and the swirl parameter is observed, and
stabilization regime is reached at distances from the rotating
pipe entrance much larger than it was obtained in experiments.
At strong swirl �N � 1�, the model does not describe turbu-
lence structure adequately, that is, it predicts almost total
suppression of turbulence in the section x=D � 168 in con-
tradiction with the experimental data (Nishibori et al., 1987).
The results of calculation of the damping coe�cient of the
longitudinal component of the turbulent kinetic energy cal-
culated by M1, is shown in Fig. 1 as a function of the distance
along the pipe axis.

Some results of calculations by M2 are also given in Fig. 1.
The model does not describe correctly the behavior of the
damping coe�cient Ku and other statistical characteristics in a
short pipe ¯ow. However, a qualitative agreement is obtained
for the increase of the turbulence intensities in the section
686 x=D6 168 of a long rotating pipe. The calculations indi-
cate a dependence of the moments behavior on the Reynolds
number at di�erent pipe lengths and on swirl parameters in
contradiction with experimental data. At high Reynolds
numbers, the stabilization regime is not reached at all. So, the
most known and simple variant of the RSTM does not des-
cribe correctly the ¯ow structure.

The calculation results obtained by M3 are presented in
Figs. 1±3. The pro®les of the longitudinal and circumferential
components of the mean ¯ow velocity are shown at x=D � 120,

Fig. 1. Behavior of Ku along a pipe axis (r=R � 0, N � 0:34): ( ± ± ± )

Rem � 3:7 � 104; (±±±) Rem � 104 (curves 1,2: M1; 3,4: M2; 5,6: M3).
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160 and compared with experimental data of Imao et al. (1996)
and Kikuyama et al. (1983) at di�erent swirl parameters. At
moderate swirl, the model reproduces the evolution of the
pro®le U along the pipe and gives its correct limit shape
(Fig. 2). It is seen that in the stabilization regime, dependence
of U on the Reynolds number is weak in accordance with
experimental data. The pro®le of the circumferential velocity
component (Fig. 3) reaches its limit parabolic shape at N 6 1
and it does not depend on Re. Other statistical characteristics
also reach their limit pro®les, but their behavior along the pipe
is not described correctly. In Fig. 1, the behavior of Ku ob-
tained by M3, is shown as an example. For Ku, calculations
demonstrate a weak dependence on the Reynolds number, and
this dependence is observed in the whole pipe ¯ow.

Thus, calculations demonstrate that RSTMs, even those
modi®ed specially for a swirling ¯ow (Kurbatskii et al., 1995;
Launder, 1989), can catch only some features of the ¯ow
structure and only under moderate swirl.

3. Turbulent di�usion models

Roots of shortcomings of RSTMs lie in models for pres-
sure±strain correlations, dissipative tensor, and turbulent dif-
fusion, if to stay in a frame of classical RSTMs. Contribution
of models for each term should be estimated. In the present
paper, the question how TDMs in¯uence the results of calcu-
lations is studied, with models for dissipative tensor and
pressure±strain correlations being considered as given. Taking
into account that a pipe ¯ow is inhomogeneous and that these
are the third-order moments, which characterize the degree of
¯ow inhomogeneity, it could be expected to improve results by
using more correct model for turbulent di�usion. For example,
some improvement has been got in such a way for a ¯ow with
buoyancy (Craft et al., 1997).

3.1. Veri®cation of TDMs in a short pipe ¯ow

At ®rst, veri®cation of some known models for turbulent
di�usion (Daly and Harlow, 1970; Hanjali�c and Launder,
1972; Dekeyser and Launder, 1983; Nagano and Tagawa,
1991) was carried out in a developed isothermal incompress-
ible ¯ow in a short rotating pipe �x=D � 25� at Rem � 37000.
The model equations for the third-order velocity moments
were solved in the output section of a pipe. The ®rst- and
second-order velocity moments necessary for calculation, were

either obtained preliminarily by the Reynolds stress transport
model (Kurbatskii et al., 1995) or taken from experiments
(Zaets et al., 1985). In both cases, the results of calculations
were compared with experimental data (Zaets et al., 1985;
Karlsson et al., 1988; Fontaine and Deutsch, 1995). Com-
parison showed that no model can describe completely the
behavior of the third-order moments over the whole pipe ¯ow,
from the axis to the wall, and under swirl (Poroseva, 1996;
Kurbatskii and Poroseva, 1997). Therefore, a new model for
the triple velocity correlations has been developed (Poroseva,
1996).

3.2. Present model

A new tensor-invariant model is derived from the exact
transport equation for the triple velocity correlations:

Dhui uj uki
Dt

� Pijk1 � Pijk2 � Dijk �Pijk ÿ eijk ; �9�

where Pijk1 and Pijk2 are production terms due to Reynolds
stresses interacting with their gradients as well as mean strains
and do not need modelling, Dijk , Pijk , and eijk represent the
terms of di�usion, pressure-containing correlation, and dissi-
pation, respectively.

The production terms do not need modeling.
The advective term and eijk are neglected. The dissipation

term can be neglected in the assumption that the length scale of
two-point velocity correlations is much less than that of the
mean ¯ow (Chou, 1945). Note that attempts to model eijk were
made, but we found that it does not in¯uence the ®nal result of
modeling the triple velocity correlations.

For the pressure-containing correlation Pijk , the new ten-
sor-invariant model expressions of ``rapid'' and ``return-to-
isotropy'' parts are suggested.

Analyzing properties of the integral representation of
hui uj p;ki obtained by solution of the corresponding Poisson
equation for the pressure ¯uctuations, it is possible to derive
the following expression for Pijk:

Pijk � ÿ 1

q
hui uj p;ki
ÿ � huj uk p;ii � ui uk p;ji

� � an
mijk U m

;n � bijk ;

on the same assumption as it was done to exclude eijk from
Eq. (9). The general model form for the tensor function an

mijk in
an incompressible ¯ow reduces (Poroseva, 1996) to

an
mijk � C3�hui uj umidn

k � huj uk umidn
i � hui uk umidn

j �
� C4 hui uj unidkm

ÿ � huj uk unidim � hui uk unidjm

�
:

Fig. 2. Calculations by M3: ( ± ± ± ) Rem � 3:7 � 104, (±±±) Rem

� 104. Experimental data of Kikuyama et al. (1983) (Rem � 104�.

Fig. 3. Experimental data of Kikuyama et al. (1983) �Rem � 104;
3 � 104� and Imao et al. (1996) �Rem � 2 � 104�.
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For the ``return-to-isotropy'' part of the correlation Pijk,
the following model expression is suggested:

bijk � ÿhui uj uki
Cs3 � s � bijkrhut uri;t:

The general form for the tensor function bijkr, linear in the
Reynolds stresses at a point and symmetric with respect to the
rearrangement of index i, j, and k, can be written as

bijkr � C6 huj ukidir

ÿ � hui ujidkr � hui ukidjr

�� C7 huj uridik

ÿ
� hui uridjk � huk uridij

�� C8 dikdjr

ÿ � dijdkr � djkdir

� � E:
Here, Cs3 and C3±8 are model constants obtained by com-

paring the calculated pro®les with the experimental ones.
The model expression for the di�usion term Dijk is derived

using the quasinormality hypothesis that any fourth-order
cumulants are zero and applying the high Reynolds number
approximation:

Dijk � ÿ hui ujihuk umiÿ � huj ukihui umi � huk uiihuj umi�
;m
:

The resulting model (named hereafter `KP') includes ten
model transport equations for the triple velocity correlations,
which can be expressed one after another and solved in se-
quence.

Some results obtained by this model, e.g., for the skewness
factor in the longitudinal direction in a rotating pipe ¯ow, are
presented in Fig. 4. In comparison with other TDMs, this
model describes the turbulence structure in the whole pipe ¯ow
area and under swirl.

4. Calculations by the RSTM with di�erent TDMs

4.1. Numerical procedure

For testing TDMs, we used the standard RSTM (M2) de-
scribed in Section 2.2. Calculations were carried out at
Reo � �4±5� � 104.

For the turbulent di�usion term Dij, several TDMs were
sequentially introduced in Eq. (1). The best results have been
got with ones suggested in Hanjali�c and Launder (1972) and
Poroseva (1996).

The former model (denoted as `HL') is tensor-invariant and
of the gradient type:

hui uj uki � ÿ Cs2 � s hum ujihui uki;m
�

� hum uiihuj uki;m
� hum ukihui uji;m

�
�Cs1 � 0:18�:

Also, the result obtained by using the TDM (Daly and
Harlow, 1970) will be discussed. This is the simplest model
(denoted as `DH')

hui uj uki � ÿCs1 � s hum ukihui uji;m
� �

�Cs1 � 0:22�
and therefore, is often used in practical calculations.

To make possible the application in the numerical proce-
dure of any model for triple velocity correlations (see Sec-
tion 2.3), we should leave Dij in set (1) in its general form: -
hui uj umi;m. However, the price of generality of the procedure is
a decrease of the forward-step size dx to 0.001R to avoid in-
stability of the scheme, and it results in an essential increase of
computer time. In this sense, further work is necessary to im-
prove the procedure e�ciency. Also, it was found that the
di�erential equations for hv2i and hw2i, rather than for k and a,
should be solved to avoid non-physical oscillations of solution
near the axis pipe, which appear in the latter case. The cor-
responding boundary conditions have been changed on
ohv2i=or � ohw2i=or � 0 �r � 0�; hv2i � hw2i � 0 �r � R�.

4.2. Results and discussion

4.2.1. Stationary pipe ¯ow
Calculations made with the DH-model, show that simple

non-tensor-invariant model cannot describe correctly, in par-
ticular, the behavior of hv2i and hw2i near the pipe axis. The
condition hv2i � hw2i at r � 0 cannot be obtained, that is in
contradiction with experimental data. Such problem did not
appear in Hirai et al. (1989), and Kurbatskii et al. (1995),
because the forced condition a � 0 was used. Application of
tensor-invariant models such as HL and KP has no such
failing. Moreover, Figs. 5 and 6 show that the DH-model does
not describe the behavior of the triple velocity correlations at
all.

Models HL and KP are both tensor-invariant, but the
former is of gradient type, whereas the latter not. Calculations
demonstrate that to get the best results, the empirical coe�-
cients C1, C2, and C02 in model expressions for the pressure±
strain correlation (4), (5), and (7) should be taken for both
models equal to 1.7, 0.5, and 0.4, respectively, that is in
agreement with conclusions of (Morris, 1984); coe�cient Cd in
the damping function f1 (So and Yoo, 1986) should be chosen
1.0 instead of 0.5; Ce1 � 1:35; Ce2 � 1:8. The other constants

Fig. 5. Pro®les of the longitudinal skewness factor in a stationary pipe

¯ow.

Fig. 4. Behavior of the longitudinal skewness factor under swirl ob-

tained by the KP-model. Experimental data of Zaets et al. (1985).
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were the following. For the HL-model: C01 � 0:4, Ce � 0:25,
Cs2 � 0:18 (instead of 0.11 usually used). For the KP-model:
C01 � 0:3, Ce � 0:3, Cs3 � 0:12, C3 � 0:1, C4 � 0:8, C6 � ÿ1:2,
C7 � ÿ0:2, C8 � 0:4.

Some results are presented in Figs. 5 and 6. Note that ex-
perimental data shown in ®gures were obtained at di�erent
values of the momentum thickness Reynolds number, so, the
comparison can be only qualitative. The KP-model gives good
results for the triple velocity correlations in the whole ¯ow
area, whereas the HL-model does not describe a wall area and
gives the zero value of S�u� on the pipe axis in contradiction
with the experimental data. For the other triple velocity cor-
relations in the ¯ow core, this model gives results quantita-
tively comparable with the ones obtained by the KP-model.

However, for reproducing the behavior of the second-order
moments as well as the mean velocity components, the im-
portant characteristic of the applied TDM is its tensor-
invariance. Moreover, in any case the damping functions as
wall corrections should be kept both in the e-equation and in
the model expression for the pressure±strain correlation.

4.2.2. Rotating pipe ¯ow
Under swirl, tensor-invariant TDMs give better results.

Some pro®les obtained by the RSTM with HL-model are
shown in Figs. 7 and 8 at x=D � 25. They are compared
with the data (Kurbatskii et al., 1995), where the DH-model

was applied to model turbulent di�usion. The di�erence is
strong especially near the wall and increases with swirl in-
creasing.

To describe the initial section of a rotating pipe ¯ow, we
kept modi®cation of Eq. (2) by Richardson number �Ri � 2:�,
but the results for Ku in Fig. 9 were obtained at Ri� 0. More
experimental data are necessary to understand if we should
apply such modi®cation or not, because in experiments (Zaets
et al., 1985; Nishibori et al., 1987), the di�erent degree of
turbulence suppression was obtained in the initial pipe sec-
tion.

Pro®les calculated with the use of KP- and HL-models are
close and with increasing both swirl and Reynolds number,
the di�erence between them becomes less. Also, the HL-
model gives more stable results at di�erent values of the swirl
number. So, we come to a paradoxical conclusion that a less
correct TDM is preferable at present for practical calcula-
tions. The reason lies in incorrect modeling the other terms in
set (1).

In a long rotating pipe, the standard RSTM with the ten-
sor-invariant TDM describes the behavior of the second-order
moments in the saturation regime (Fig. 9). In spite of this,
pro®les of the mean velocity components are reproduced worse
(Fig. 10) than by M3 (Fig. 2). It shows that mean velocity
pro®les are in¯uenced, in the main, by the model expression
for the pressure±strain correlations.

Fig. 7. Calculated pro®les: ( ± ± ± ) Kurbatskii et al. (1995); (±±±) with

using the HL-model. Experimental data of Zaets et al. (1985).

Fig. 8. Calculated pro®les: ( ± ± ± ) Kurbatskii et al. (1995), (±±±) with

using the HL-model. Experimental data of Zaets et al. (1985).

Fig. 9. Calculated pro®les obtained with the use of KP-model (curve

1), HL-model (curve 2), and by M3 (curve 3). Experimental data of

Nishibori et al. (1987) (N � 0:5, Rem � 3 � 104).

Fig. 6. Pro®les of the longitudinal skewness factor in a stationary pipe

¯ow.

346 A.F. Kurbatskii, S.V. Poroseva / Int. J. Heat and Fluid Flow 20 (1999) 341±348



5. Conclusion

The structure of a turbulent ¯ow in a rotating cylindrical
pipe undergoes a complicated evolution along the pipe axis.
The calculations demonstrate that RSTMs, even those modi-
®ed specially for a swirling ¯ow, cannot describe a ¯ow
structure completely.

To calculate the ®rst- and second-order velocity moments
in a swirling ¯ow of practical interest, the main condition for
a TDM used is its tensor-invariance, and the model (Hanjali�c
and Launder, 1972) is the best choice at present. This model
is simple and gives stable results at di�erent swirl numbers.
Application of more correct TDM though results in improved
description of the ®rst- and second-order moments evolution
in a ¯ow under swirl, but this improvement is not cardinal
and the di�erence in the results obtained by two TDMs de-
creases with increasing the swirl parameter. Even if tensor-
invariant TDMs are used, we should keep in the RSTM the
damping functions as wall correction, and the Richardson
number to describe turbulence suppression in a short rotating
pipe.

The evolution of the mean velocity components are in¯u-
enced by the model expression for the pressure±strain corre-
lations, rather than the TDM. However, the use of more
accurate TDMs, such as suggested, for instance, in Poroseva
(1996), gives a possibility to develop more physically correct
models for these correlations as well as for dissipation tensor
and, ®nally, get the RSTM, which will be possible to apply a
wider range of ¯ows. Such model can be also used for re-
searching turbulent transport of components of the turbulent
kinetic energy as well as developing models for heat and mass
transport.
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